Analysis of van der Waals density functional components: Binding and corrugation of benzene and C-60 on boron nitride and graphene

نویسندگان

  • Kristian Berland
  • Per Hyldgaard
چکیده

The adsorption of benzene and C60 on graphene and boron nitride is studied using density functional theory with the van der Waals density functional (vdW-DF). By comparing these systems we can systematically investigate their adsorption nature and differences between the two functional versions vdW-DF1 and vdW-DF2. The bigger size of the C60 molecule makes it bind stronger to the surface than benzene, yet the interfaces between the molecules and the sheets are similar in nature. The binding separation is more sensitive to the exchange variant used in vdW-DF than to the correlation version. This result is related to the exchange and correlation components of the potential energy curve. We show that a moderate dipole forms for C60 on graphene, unlike for the other adsorption systems. We find that the corrugation (at the atomic scale) is very sensitive to the variant or version of vdW-DF used, in particular, the exchange. Further, we show that this sensitivity arises indirectly through the shift in binding separation caused by changing the vdW-DF variant. Based on our results, we suggest a concerted theory-experiment approach to assess the exchange and correlation contributions to physisorption. Using DFT calculations, the corrugation can be linked to the optimal separation, allowing us to extract the exchange-correlation part of the adsorption energy. Molecules with the same interfaces to the surface, but different geometries, can in turn cast light on the role of van der Waals forces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved description of soft layered materials with van der Waals density functional theory.

The accurate description of van der Waals forces within density functional theory is currently one of the most active areas of research in computational physics and chemistry. Here we report results on the structural and energetic properties of graphite and hexagonal boron nitride, two layered materials where interlayer binding is dominated by van der Waals forces. Results from several density ...

متن کامل

Stability and Electronic Properties of 2D Nanomaterials Conjugated with Pyrazinamide Chemotherapeutic: A First-Principles Cluster Study

Electronic and optical properties of 2D models of graphene, boron nitride (BN), silicene, SiC, and phosphorene functionalized with pyrazinamide (PZA), a front line antitubercular chemotherapeutic, are investigated using cluster models and density functional theory with van der Waals dispersion corrections and including solvent effects. PZA favors covalent functionalization onto silicene and SiC...

متن کامل

In-situ epitaxial growth of graphene/h-BN van der Waals heterostructures by molecular beam epitaxy

Van der Waals materials have received a great deal of attention for their exceptional layered structures and exotic properties, which can open up various device applications in nanoelectronics. However, in situ epitaxial growth of dissimilar van der Waals materials remains challenging. Here we demonstrate a solution for fabricating van der Waals heterostructures. Graphene/hexagonal boron nitrid...

متن کامل

The computational study of adsorption of carbon monoxide on pristine and Ge-doped (6,0) zigzag models of BNNTs

The aim of this research is studying the effects of Ge-doped on CO adsorption on the outer and inner surfaces of (6, 0) zigzag model of boron nitride nanotube (BNNTs) by using DFT theory. For this purpose, eight models of CO adsorption on the surfaces of BNNTs are considered. At first step, all structures were optimized at B3LYP and 6-31G (d) standard base set and then the electronic structure,...

متن کامل

Sliding mechanisms in multilayered hexagonal boron nitride and graphene: the effects of directionality, thickness, and sliding constraints.

The interlayer sliding potential of multilayered hexagonal boron nitride (h-BN) and graphene is investigated using density-functional theory including many-body van der Waals (vdW) interactions. We find that interlayer sliding constraints can be employed to tune the contribution of electrostatic interactions and dispersive forces to the sliding energy profile, ultimately leading to different sl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013